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Chapter 1

Empirical Distribution

Lemma 1.0.1. Let (𝒳, 𝑑) be a Polish space. Let 𝜇 ∶ Ω → 𝒫(𝒳) be measureable wiht respect to
the cylinder 𝜎-algebra on 𝒫(𝒳). Let 𝑓 ∶ 𝒳 → 𝒴 be measurable. define 𝜑 ∶ Ω → 𝒴 by

𝜑(𝜔) = ∫
𝒳

𝑓(𝑥) 𝑑𝜇(𝜔)(𝑥).

Then 𝜑 is a measurable map from Ω → 𝒴.
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Chapter 2

Random Matrix Theory
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Chapter 3

Convergence of Matrix Moments

3.1 Convergence in Expectation
Lemma 3.1.1 (Matrix Powers Entries). Let 𝑌 be an 𝑛 × 𝑛 matrix and 𝑘 ∈ ℕ. Then, for each
(𝑖, 𝑗)-th entry of 𝑌 𝑘, we have:

(𝑌 𝑘)𝑖𝑗 = ∑
1≤𝑖2,…,𝑖𝑘≤𝑛

𝑌𝑖𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑗

Proof. We proceed by induction on 𝑘.
Our base case is 𝑘 = 1, then:

𝑌 1
𝑛 = 𝑌𝑛 ⇒ [𝑌 1

𝑛 ]𝑖𝑗 = 𝑌𝑖𝑗,

which matches the formula since the summation over zero indices just gives the term 𝑌𝑖𝑗.
Our inductive step is to assume that the formula holds for some 𝑘 ≥ 1, i.e.,

[𝑌 𝑘
𝑛 ]𝑖𝑗 = ∑

1≤𝑖2,…,𝑖𝑘≤𝑛
𝑌𝑖𝑖2

𝑌𝑖2𝑖3
⋯ 𝑌𝑖𝑘𝑗.

We must show that it holds for 𝑘 + 1. Note that:

[𝑌 𝑘+1
𝑛 ]𝑖𝑗 =

𝑛
∑
ℓ=1

[𝑌 𝑘
𝑛 ]𝑖ℓ 𝑌ℓ𝑗

=
𝑛

∑
ℓ=1

( ∑
1≤𝑖2,…,𝑖𝑘≤𝑛

𝑌𝑖𝑖2
𝑌𝑖2𝑖3

⋯ 𝑌𝑖𝑘ℓ) 𝑌ℓ𝑗

= ∑
1≤𝑖2,…,𝑖𝑘,𝑖𝑘+1≤𝑛

𝑌𝑖𝑖2
𝑌𝑖2𝑖3

⋯ 𝑌𝑖𝑘𝑖𝑘+1
𝑌𝑖𝑘+1𝑗.

Thus, the formula holds for 𝑘 + 1.
By induction, the result holds for all 𝑘 ≥ 1.

Lemma 3.1.2 (Matrix Powers Trace). Let 𝑌 be an 𝑛 × 𝑛 matrix and 𝑘 ∈ ℕ. Then, the trace of
𝑌 𝑘 is given by:

Tr[𝑌 𝑘] = ∑
1≤𝑖1,𝑖2,…,𝑖𝑘≤𝑛

𝑌𝑖1𝑖2
𝑌𝑖2𝑖3

⋯ 𝑌𝑖𝑘𝑖1
.
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Proof. We can use the result from Lemma 3.1.1 to compute the trace of 𝑌 𝑘:

Tr[𝑌 𝑘] =
𝑛

∑
𝑖=1

(𝑌 𝑘)𝑖𝑖 =
𝑛

∑
𝑖=1

( ∑
1≤𝑖2,…𝑖𝑘≤𝑛

𝑌𝑖𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑖)

= ∑
1≤𝑖1,𝑖2,…,𝑖𝑘≤𝑛

𝑌𝑖1𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑖1
.

Definition 3.1.3 (Graphs from Multi Index). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i = (𝑖1, 𝑖2, … , 𝑖𝑘). A
graph 𝐺i is defined as follows: the vertices 𝑉i are the distinct elements of

{𝑖1, 𝑖2, … , 𝑖𝑘} ,

and the edges 𝐸i are the distinct pairs among

{𝑖1, 𝑖2} , {𝑖2, 𝑖3} , … , {𝑖𝑘−1, 𝑖𝑘} , {𝑖𝑘, 𝑖1} .

Definition 3.1.4 (Definition 4.2 in [1]). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i = (𝑖1, 𝑖2, … , 𝑖𝑘). the path
𝑤i is the sequence

𝑤i = ({𝑖1, 𝑖2} , {𝑖2, 𝑖3} , … , {𝑖𝑘−1, 𝑖𝑘} , {𝑖𝑘, 𝑖1})
of edges from 𝐸i

Definition 3.1.5 (Graph Edge Count). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i = (𝑖1, 𝑖2, … , 𝑖𝑘). For any
edge 𝑒 = {𝑖, 𝑗} from 𝐸i, we define the edge count 𝑤i(𝑒) as the number of times each edge 𝑒 is
traversed, and if (𝑖, 𝑗) ∉ 𝐸i, then 𝑤i({𝑖, 𝑗}) = 0.

Definition 3.1.6 (Matrix Multi Index). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i = (𝑖1, 𝑖2, … , 𝑖𝑘). Let 𝑌 be
a symmetric matrix. The matrix multi index 𝑌i is defined as:

𝑌i = 𝑌𝑖1𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑖1

Lemma 3.1.7 (Matrix Multi Index and Graph Equivalence). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i =
(𝑖1, 𝑖2, … , 𝑖𝑘). Let 𝑌 be a symmetric matrix. Then, we have the following:

𝑌i = 𝑌𝑖1𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑖1
= ∏

𝑤∈𝑤i

𝑌𝑤

Proof. We see from definition 3.1.4 that the path is defined as:

𝑤i = ({𝑖1, 𝑖2}, {𝑖2, 𝑖3}, … , {𝑖𝑘−1, 𝑖𝑘}, {𝑖𝑘, 𝑖1}).

if we use each each edge 𝑤 ∈ 𝑤i, due to symmetry, we can write the product:

∏
𝑤∈𝑤i

𝑌𝑤 = 𝑌{𝑖1,𝑖2}𝑌{𝑖2,𝑖3} … 𝑌{𝑖𝑘−1,𝑖𝑘}𝑌{𝑖𝑘,𝑖1} = 𝑌𝑖1𝑖2
𝑌𝑖2𝑖3

… 𝑌𝑖𝑘𝑖1
= 𝑌i

as required.

Lemma 3.1.8 (Graph Walk and Graph Count Equivalence). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i =
(𝑖1, 𝑖2, … , 𝑖𝑘). Let 𝑌 be a symmetric matrix. Then, we have the following:

𝑌i = ∏
𝑤∈𝑤i

𝑌𝑤 = ∏
1≤𝑖≤𝑗≤𝑛

𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 .
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Proof. Using lemma 3.1.7, we already have that 𝑌i = ∏𝑤∈𝑤i
𝑌𝑤. We consider the following cases

for each (𝑖, 𝑗):

(𝑖, 𝑗) ∉ 𝑤i: In this case, the entry 𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 = 1, making no contribution to the product.

(𝑖, 𝑗) ∈ 𝑤i: In this case, the entry 𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 is equal to the number of times the unordered

edge {𝑖, 𝑗} appears in the path 𝑤i.

These two cover all possibilities, so putting them together we obtain

𝑌i = ∏
1≤𝑖≤𝑗≤𝑛

𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 .

Indeed, if (𝑖, 𝑗) ∉ 𝑤i then 𝑤i({𝑖, 𝑗}) = 0 and the corresponding factor contributes 𝑌 0
𝑖𝑗 = 1, and if

(𝑖, 𝑗) ∈ 𝑤i (hence also (𝑗, 𝑖) if 𝑗 < 𝑖), the exponent 𝑤i({𝑖, 𝑗}) counts exactly how many times the
unordered edge {𝑖, 𝑗} appears in the walk, so the factor is 𝑌 𝑤i({𝑖,𝑗})

𝑖𝑗 .
Because every unordered pair {𝑖, 𝑗} with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 is covered by one of these two cases

and the product lists each edge exactly once.

Definition 3.1.9 (Self Edges). Let i ∈ [𝑛]𝑘 be a 𝑘-index. Given graph 𝐺i, define the self-edges
𝐸𝑠

i as:
{{𝑖, 𝑖} ∈ 𝐸i},

the set of edges where both vertices are the same.

Definition 3.1.10 (Connecting Edges). Let i ∈ [𝑛]𝑘 be a 𝑘-index. Given graph 𝐺i, define the
connecting-edges 𝐸𝑐

i as:
{{𝑖, 𝑗} ∈ 𝐸i ∶ 𝑖 ≠ 𝑗}

Lemma 3.1.11 (Expectation of Matrix Multi Index). Let i ∈ [𝑛]𝑘 be a 𝑘-index, i = (𝑖1, 𝑖2, … , 𝑖𝑘).
Let 𝑌 be a symmetric matrix and let {𝑌𝑖𝑗}1≤𝑖≤𝑗 be independent random variables, with {𝑌𝑖𝑖}𝑖≥1
identically distributed and {𝑌𝑖𝑗}1≤𝑖<𝑗 identically distributed. Then, we have the following:

𝔼(𝑌i) = ∏
𝑒𝑠∈𝐸𝑠

i

𝔼(𝑌 𝑤i(𝑒𝑠)
11 ) ⋅ ∏

𝑒𝑐∈𝐸𝑐
i

𝔼(𝑌 𝑤i(𝑒𝑐)
12 ).

Proof.

Lemma 3.1.12 (Trace of Expectation of Matrix). Let Y𝑛 be an 𝑛 × 𝑛 symmetric matrix with
independent entries, where {𝑌𝑖𝑗}1≤𝑖≤𝑗 are independent random variables, with {𝑌𝑖𝑖}𝑖≥1 identically
distributed and {𝑌𝑖𝑗}1≤𝑖<𝑗 identically distributed. Then, for any 𝑘-index i ∈ [𝑛]𝑘, we have:

𝔼(Tr(Y𝑘
𝑛)) = ∑

1≤𝑖1,𝑖2,…,𝑖𝑘≤𝑛
𝔼(𝑌𝑖1𝑖2

𝑌𝑖2𝑖3
⋯ 𝑌𝑖𝑘𝑖1

) = ∑
i∈[𝑛]𝑘

𝔼(𝑌𝑖)

Proof. Because each 𝑌𝑖𝑗 is independent, we can write:

𝔼(𝑌i) = 𝔼 ( ∏
1≤𝑖≤𝑗≤𝑛

𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 ) = ∏

1≤𝑖≤𝑗≤𝑛
𝔼(𝑌 𝑤i({𝑖,𝑗})

𝑖𝑗 )

using lemma 3.1.8. Consider the following cases for each (𝑖, 𝑗) (we assume each (𝑖, 𝑗) ∈ 𝑤i since
if they aren’t, then 𝑤i(𝑖, 𝑗) = 0 and this contributes nothing to the product):
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i = j: in this case, we have 𝑌𝑖𝑗 = 𝑌𝑖𝑖, and therefore the edge (𝑖, 𝑖) ∈ 𝐸𝑠
i . Since each 𝑌𝑖𝑖 is

identically distributed for all 𝑖, we have:

𝔼(𝑌𝑖𝑖) = 𝔼(𝑌11)

so the factor in the product above becomes 𝔼(𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 ) = 𝔼(𝑌 𝑤i(𝑖,𝑖)

11 ).

i < j: in this case, we have 𝑌𝑖𝑗 ∈ 𝐸𝑐
i . Since each non diagonal entry 𝑌𝑖𝑗 is identically distributed

for all 𝑖 ≠ 𝑗 (and by symmetry 𝑌𝑖𝑗 = 𝑌𝑗𝑖), we have:

𝔼(𝑌𝑖𝑗) = 𝔼(𝑌12)

so the factor in the product above becomes 𝔼(𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 ) = 𝔼(𝑌 𝑤i(𝑖,𝑗)

12 ).

Plugging both of these cases into the earlier product over 𝐸𝑐
i and 𝐸𝑠

i , we have:

∏
1≤𝑖≤𝑗≤𝑛

𝔼(𝑌 𝑤i({𝑖,𝑗})
𝑖𝑗 ) = ∏

𝑒𝑠∈𝐸𝑠
i

𝔼(𝑌 𝑤i(𝑒𝑠)
11 ) ⋅ ∏

𝑒𝑐∈𝐸𝑐
i

𝔼(𝑌 𝑤i(𝑒𝑐)
12 )

as required.

Definition 3.1.13 (Product of Expectation of Matrix Multi Index). Let i ∈ [𝑛]𝑘 be a 𝑘-index,
i = (𝑖1, 𝑖2, … , 𝑖𝑘). Let 𝑌 be a symmetric matrix and let {𝑌𝑖𝑗}1≤𝑖≤𝑗 be independent random
variables, with {𝑌𝑖𝑖}𝑖≥1 identically distributed and {𝑌𝑖𝑗}1≤𝑖<𝑗 identically distributed. We define
Π(𝐺i), 𝑤i as follows:

Π(𝐺i, 𝑤i) = ∏
𝑒𝑠∈𝐸𝑠

i

𝔼(𝑌 𝑤i(𝑒𝑠)
11 ) ⋅ ∏

𝑒𝑐∈𝐸𝑐
i

𝔼(𝑌 𝑤i(𝑒𝑐)
12 ) = 𝔼(𝑌i).

Definition 3.1.14 (Length |𝑤i| : R-1-1 : def:length_of_w_i). Given a path 𝑤i generated by
some 𝑘-index i, we let |𝑤i| denote the length of 𝑤i.

Lemma 3.1.15 (|𝑤i| = 𝑘 : R-1-2 : lem:abs_w_i_eq_k). For any 𝑘-index i, the connected graph
𝐺i = (𝑉i, 𝐸i) has at most 𝑘 vertices. Furthermore

|𝑤i| ≡ ∑
𝑒∈𝐸i

𝑤i(𝑒) = 𝑘.

Proof. Foremost, since the number of vertices of the graph 𝐺i are the number of distinct elements
of the 𝑘-index i, it clearly follows that #𝑉i ≤ 𝑘. On the other hand, recall that each 𝑤𝑖(𝑒)
denotes the number of times the edge 𝑒 ∈ 𝐸i is traversed by the path 𝑤i. Since |𝑤i| = 𝑘 by the
construction of 𝑤i, it follows that

|𝑤i| ≡ ∑
𝑒∈𝐸i

𝑤i(𝑒) = 𝑘.

Definition 3.1.16 (Length |𝑤| : R-1-3 : def:length_of_w). Given any graph 𝐺 = (𝑉 , 𝐸) and a
path 𝑤, we let |𝑤| denote the length of 𝑤.
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Definition 3.1.17 (𝒢𝑘 : R-1-4 : def:g_k). Let 𝒢𝑘 denote the set of all ordered pairs (𝐺, 𝑤)
where 𝐺 = (𝑉 , 𝐸) is a connected graph with at most 𝑘 vertices, and 𝑤 is a closed path covering
𝐺 satisfying |𝑤| = 𝑘.

Lemma 3.1.18 (𝑤 can be uniquely expressed : R-1-5-0 : def:w_unique). Given (𝐺, 𝑤) ∈ 𝒢𝑘,
let us denote the path 𝑤 by

𝑤 = ({𝑖1, 𝑖2}, {𝑖3, 𝑖4}, ..., {𝑖2𝑘−3, 𝑖2𝑘−2}, {𝑖2𝑘−1, 𝑖2𝑘}).

Then we can choose the smallest integer appearing in {𝑖1, 𝑖2} ∩ {𝑖2𝑘−1, 𝑖2𝑘} such that 𝑤 takes the
form

𝑤 = ({𝑗1, 𝑗2}, {𝑗2, 𝑗3}, ..., {𝑗𝑘−1, 𝑗𝑘}, {𝑗𝑘, 𝑗1}). (3.1)

Proof. There is at least one way and at most two ways to express 𝑤 in the form of Equation 3.1.
This follows from the fact that detemining the first entry 𝑗1 (for which we have two choices of
𝑖1 or 𝑖2) of a path completely determines the remaining entries 𝑗2, 𝑗3, ..., 𝑗𝑘. Note that this also
implies that we can not express express 𝑤 in two ‘distinct’ forms of Equation 3.1 by starting
with the same choice of 𝑗1.

Definition 3.1.19 (𝑘-index generated by (𝐺, 𝑤) : R-1-5 : def:g_k_j). Given (𝐺, 𝑤) ∈ 𝒢𝑘, we
denote j as the 𝑘-index generated by (𝐺, 𝑤) in the following way. The path 𝑤 can be uniquely
expressed under the condition of Lemma 3.1.18:

𝑤 = ({𝑗1, 𝑗2}, {𝑗2, 𝑗3}, ..., {𝑗𝑘−1, 𝑗𝑘}, {𝑗𝑘, 𝑗1}).

We define j = (𝑗1, 𝑗2, ..., 𝑗𝑘−1, 𝑗𝑘).
Definition 3.1.20 ((𝐺i, 𝑤i) = (𝐺, 𝑤) : R-1-6 : def:g_k_equiv). Let (𝐺i, 𝑤i) be an ordered pair
generated by some 𝑘-index i and (𝐺, 𝑤) ∈ 𝒢𝑘. We say (𝐺i, 𝑤i) = (𝐺, 𝑤) if and only if there exists
a bijection 𝜑 from the set of entries i onto the set of entries j such that

i = (𝑖1, ..., 𝑖𝑘) ⟺ j = (𝜑(𝑖1), 𝜑(𝑖2), ..., 𝜑(𝑖𝑘)),

where j is a 𝑘-index generated by (𝐺, 𝑤).
Lemma 3.1.21 (i ∼ j ⇒ 𝔼(𝑌i) = 𝔼(𝑌j) : R-1-7 : lem:eq_equiv_eq_expect). Given two 𝑘-
indexes i = (𝑖1, ..., 𝑖𝑘) and j = (𝑗1, ..., 𝑗𝑘), suppose there exists a bijection 𝜑 from the set of
entries of i onto the set of entries of j such that

i = (𝑖1, ..., 𝑖𝑘) ⟺ j = (𝜑(𝑖1), 𝜑(𝑖2), ..., 𝜑(𝑖𝑘)).

Then 𝔼(𝑌i) = 𝔼(𝑌j).
Proof. Given 𝑌i = 𝑌𝑖1𝑖2

𝑌𝑖2𝑖3
⋯ 𝑌𝑖𝑘−1𝑖𝑘

𝑌𝑖𝑘𝑖1
, we have

𝑌j = 𝑌𝑗1𝑗2
𝑌𝑗2𝑗3

⋯ 𝑌𝑗𝑘−1𝑗𝑘
𝑌𝑗𝑘𝑗1

= 𝑌𝜑(𝑖1)𝜑(𝑖2)𝑌𝜑(𝑖2)𝜑(𝑖3) ⋯ 𝑌𝜑(𝑖𝑘−1)𝜑(𝑖𝑘)𝑌𝜑(𝑖𝑘)𝜑(𝑖1).

Observe that {𝑖𝜆𝑙
, 𝑖𝜆𝑙+1

} is a singleton and only if {𝜑(𝑖𝜆𝑙
), 𝜑(𝑖𝜆𝑙+1

)} is a singleton. The fact
that {𝑖𝜆𝑙

, 𝑖𝜆𝑙+1
} = {𝑖𝜆𝜇

, 𝑖𝜆𝜇+1
} if and only if {𝜑(𝑖𝜆𝑙

), 𝜑(𝑖𝜆𝑙+1
)} = {𝜑(𝑖𝜆𝜇

), 𝜑(𝑖𝜆𝜇+1
)} completes the

proof.

Definition 3.1.22 (|𝐺| : R-1-8 : def:abs.G). Given an ordered pair (𝐺, 𝑤) ∈ 𝒢𝑘, we define |𝐺|
to be the number of distinct vertices in the graph 𝐺.
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Lemma 3.1.23 (Lemma 4.3 in [1] : R-1-9 : lem:lem_4.3). Given (𝐺, 𝑤) ∈ 𝒢𝑘, we have

#{i ∈ [𝑛]𝑘 ∶ (𝐺i, 𝑤i) = (𝐺, 𝑤)} = 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1).

Proof. By the way the equivalence relation is defined in Definition 3.1.17, the fact that there
are 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1) ways to assign |𝐺| distinct values from [𝑛] into the indices 𝑖1, ..., 𝑖|𝐺|
completes the proof.

Lemma 3.1.24 (Partitioning into double summation : R-1-10 : lem:equation_4.5_1).

𝔼 Tr(Y𝑘
i ) = ∑

(𝐺,𝑤)∈𝒢𝑘

∑
i∈[𝑛]𝑘

(𝐺i,𝑤i)=(𝐺,𝑤)

𝔼(𝑌i).

Proof. This follows from ‘partitioning’ the summation appearing in Lemma 3.1.12 using the
equivalence relation defined in Definition 3.1.20.

Definition 3.1.25 (Π(𝐺, 𝑤): R-1-11 : def:Pi.G.w). Given an ordered pair (𝐺, 𝑤) ∈ 𝒢𝑘, let j be
the 𝑘-index generated by (𝐺, 𝑤). We define

Π(𝐺, 𝑤) = 𝔼(𝑌j).

Lemma 3.1.26 (Re-indexing the sum with counting argument : R-1-12 : lem:equation_4.5_2).

𝔼 Tr(Y𝑘
i ) = ∑

(𝐺,𝑤)∈𝒢𝑘

Π(𝐺, 𝑤) ⋅ #{i ∈ [𝑛]𝑘 ∶ (𝐺i, 𝑤i) = (𝐺, 𝑤)}.

Proof. This follows from re-indexing the sum of Lemma 3.1.24 by using Lemma 3.1.21 and
Lemma 3.1.23.

Lemma 3.1.27 (Re-introducing the renormalization factor : R-1-13 : lem:equation_4.5_3).

1
𝑛𝔼 Tr(X𝑘

𝑛) = ∑
(𝐺,𝑤)∈𝒢𝑘

Π(𝐺, 𝑤) ⋅ 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1)
𝑛𝑘/2+1 .

Proof. Combining with the renormalization factor 𝑛−1 of Proposition ?? gives

1
𝑛𝔼 Tr(X𝑘

𝑛) = 1
𝑛𝑘/2+1 𝔼 Tr(Y𝑘

i ).

Substituting the term 𝔼 Tr(Y𝑘
i ) with the expression in Equation 3.1.26 gives

1
𝑛𝔼 Tr(X𝑘

𝑛) = ∑
(𝐺,𝑤)∈𝒢𝑘

Π(𝐺, 𝑤) ⋅ 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1)
𝑛𝑘/2+1 .

Definition 3.1.28 (𝒢𝑘,𝑤≥2 : R-1-14 : def:g_k_ge_2). Let 𝒢𝑘,𝑤≥2 be a subset of 𝒢𝑘 in which
the walk 𝑤 traverses each edge at least twice.

Lemma 3.1.29 (Π(𝐺, 𝑤) = 0 : R-1-15 : lem:Pi.prod_eq_zero_if_w_le_two). Given an ordered
pair (𝐺, 𝑤) ∈ 𝒢𝑘, suppose there exists an edge 𝑒 ∈ 𝐸 in which it is traversed only once in the
walk 𝑤. Then

Π(𝐺, 𝑤) = 0.
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Proof. Let (𝐺, 𝑤) ∈ 𝒢𝑘 and let j be the 𝑘-index generated by (𝐺, 𝑤). Suppose there exists an
edge 𝑒 ∈ 𝐸j such that 𝑤j(𝑒) = 1. This means, in Lemma ??, a singleton term 𝔼(𝑌 𝑤j(𝑒)

𝑖𝑗 ) = 𝔼(𝑌𝑖𝑗)
appears. The rest of the proof follows from the assumption of Proposition ?? that 𝔼(𝑌𝑖𝑗) = 0 for
every 𝑖 and 𝑗.

Lemma 3.1.30 (Simplifying the summation with the fact Π(𝐺, 𝑤) = 0 in certain cases: R-1-16
: lem:equation_4.8).

1
𝑛𝔼 Tr(X𝑘

𝑛) = ∑
(𝐺,𝑤)∈𝒢𝑘,𝑤≥2

Π(𝐺, 𝑤) ⋅ 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1)
𝑛𝑘/2+1 .

Proof. This follows from applying the result of Lemma 3.1.29 to Lemma 3.1.27.

Lemma 3.1.31 (#𝐸 ≤ 𝑘/2 : R-1-17 : lem:edge_set_order_leq_k_over_two). Given an or-
dered pair (𝐺, 𝑤) ∈ 𝒢𝑘,𝑤≥2, we must have #𝐸 ≤ 𝑘/2.

Proof. Since |𝑤| = 𝑘, if each edge in 𝐺 is traversed at least twice, then by construction of 𝑤 the
number of edges is at most 𝑘/2.

Proposition 3.1.32. Let 𝐺 = (𝑉 , 𝐸) be a connected finite graph. Then, |𝐺| = #𝑉 ≤ #𝐸 + 1.

Proof. |𝐺| = #𝑉 ≤ #𝐸 + 1: proof by induction on #𝑉 . Base case #𝑉 = 1 is obvious. For each
additional vertex, the number of edges must increase by at least one for the graph to remain
connected.

Proposition 3.1.33. Let 𝐺 = (𝑉 , 𝐸) be a connected finite graph. Then, |𝐺| = #𝑉 = #𝐸 + 1
if and only if 𝐺 is a plane tree.

Proof. |𝐺| = #𝑉 = #𝐸+1 if 𝐺 is a plane tree is already in Lean: SimpleGraph.IsTree.card_edgeFinset.
𝐺 is a plane tree if |𝐺| = #𝑉 = #𝐸 + 1: proof by induction on #𝑉 . Base case #𝑉 = 1 has

no edges. Assume #𝑉 = #𝐸 + 1 for #𝑉 = 𝑘. Now, consider a tree with #𝑉 = 𝑘 + 1 nodes.
Removing a leaf node leaves us with a tree with #𝑉 = 𝑘 nodes. By IH, there are 𝑘 − 1 edges.
So including the leaf node gives us 𝑘 edges.

Lemma 3.1.34. For any graph 𝐺 = (𝑉 , 𝐸) appearing in the sum in Equation 4.8, |𝐺| ≤ 𝑘/2+1.

Proof. Follows directly from earlier lemmas (replacing #𝐸 with 𝑘/2).

Lemma 3.1.35. 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1) ≤ 𝑛|𝐺|.

Proof. Use Nat.ascFactorial_eq_div. Or prove directly.

Lemma 3.1.36. The sequence 𝑛 ↦ 1
𝑛 𝔼 Tr(𝑋𝑘

𝑛) is bounded.

Proof. The only part that depends on 𝑛 is the big fraction. Since we only care about 𝑤 ≥ 2,
|𝐺| ≤ 𝑘/2 + 1. Use the fact that the product 𝑛(𝑛 − 1) ⋯ (𝑛 − |𝐺| + 1) is asymptotically equal to
𝑛|𝐺| to conclude that the fraction is bounded and doesn’t explode.

Lemma 3.1.37. Suppose 𝑘 odd. Then, |𝐺| ≤ 𝑘
2 + 1

2 .

Proof.

Lemma 3.1.38. Suppose 𝑘 odd. Then, 𝑛(𝑛−1)⋯(𝑛−|𝐺|+1)
𝑛𝑘/2+1 ≤ 1√𝑛 .

Proof.
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Proposition 3.1.39. Suppose 𝑘 odd. Then, lim𝑛→∞
1
𝑛 𝔼 Tr(𝑋𝑘

𝑛) = 0.

Proof. Since |𝐺| ≤ #𝐸 + 1 ≤ 𝑘/2 + 1 and |𝐺| is an integer, it follows that |𝐺| ≤ (𝑘 − 1)/2 + 1 =
𝑘/2 + 1/2. Hence, in this case, all the terms in the (finite 𝑛-independent) sum in Equation 4.8
are 𝑂(𝑛−1/2)
Lemma 3.1.40. If 𝑘 is even and there exists 𝑒 such that 𝑤(𝑒) ≥ 3, then #𝐸 ≤ 𝑘−1

2 .

Proof.

Proposition 3.1.41. Let (𝐺, 𝑤) ∈ 𝒢𝑘 with 𝑤 ≥ 2, and suppose 𝑘 is even. If there exists a
self-edge 𝑒 ∈ 𝐸𝑠 in 𝐺, then |𝐺| ≤ 𝑘/2.

Proof. Since the graph 𝐺 = (𝑉 , 𝐸) contains a loop, it is not a tree; it follows from Exercise
?? that #𝑉 < #𝐸 + 1. But 𝑤 ≥ 2 implies that #𝐸 ≤ 𝑘/2, and so #𝑉 < 𝑘/2 + 1, and so
|𝐺| = #𝑉 ≤ 𝑘/2.

Proposition 3.1.42. Let (𝐺, 𝑤) ∈ 𝒢𝑘 with 𝑤 ≥ 2, and suppose 𝑘 is even. If there exists an edge
𝑒 in 𝐺 with 𝑤(𝑒) ≥ 3, then |𝐺| ≤ 𝑘/2.

Proof. The sum of 𝑤 over all edges 𝐸 in 𝐺 is 𝑘. Hence, the sum of 𝑤 over 𝐸∖{𝑒} is ≤ 𝑘−3. Since
𝑤 ≥ 2, this means that the number of edges excepting 𝑒 is ≤ (𝑘−3)/2; hence, #𝐸 ≤ (𝑘−3)/2+1 =
(𝑘 − 1)/2. By the result of a previous lemma, this means that #𝑉 ≤ (𝑘 − 1)/2 + 1 = (𝑘 + 1)/2.
Since 𝑘 is even, it follows that |𝐺| = #𝑉 ≤ 𝑘/2.

Definition 3.1.43. Let 𝒢𝑘/2+1
𝑘 to be the set of pairs (𝐺, 𝑤) ∈ 𝒢𝑘 where 𝐺 has 𝑘/2 + 1 vertices,

contains no self-edges, and the walk 𝑤 crosses every edge exactly 2 times.

Lemma 3.1.44. |𝐺𝑘| is finite.

Proof. Follows from definition.

Lemma 3.1.45. Elements of 𝐺𝑘/2+1
𝑘 are trees.

Proof.

Lemma 3.1.46. Elements of 𝐺𝑘/2+1
𝑘 have |𝐸| = 𝑘/2.

Proof.

Proposition 3.1.47. | ∑𝒢𝑘,𝑤≥2 − ∑𝒢𝑘/2+1
𝑘

| ≤ |𝒢𝑘|/𝑛.

Proof.

Proposition 3.1.48. 1
𝑛 𝔼 Tr(𝑋𝑘

𝑛) = ∑(𝐺,𝑤)∈𝒢𝑘/2+1
𝑘

Π(𝐺, 𝑤) ⋅ 𝑛(𝑛−1)⋯(𝑛−|𝐺|+1)
𝑛𝑘/2+1 + 𝑂𝑘(𝑛−1)

Proof. If |𝐺| < 𝑘/2+1, then there is at least one more 𝑛 in the denominator than the numerator.

Proposition 3.1.49. lim𝑛→∞
𝑛𝑘/2

𝑛(𝑛−1)⋯(𝑛−𝑘/2+1) = 1.

Proof. some lower bound stuff + other stuff?

Proposition 3.1.50. lim𝑛→∞ 𝔼 Tr(𝑋𝑘
𝑛) = ∑(𝐺,𝑤)∈𝒢𝑘/2+1

𝑘
Π(𝐺, 𝑤)
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Proof. Proof: use the fact that |𝐺| = 𝑘/2 + 1 and 𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘/2 + 1) ∼ 𝑛𝑘/2+1. Limit as n
approaches infinity of 𝑂(𝑛−1/2) is 0.

Lemma 3.1.51. Π(𝐺, 𝑤) = ∏𝑒𝑐∈𝐸𝑐 𝔼(𝑌 𝑤(𝑒𝑐)
12 )

Proof. Follows directly.

Lemma 3.1.52. ∏𝑒𝑐∈𝐸𝑐 𝔼(𝑌 𝑤(𝑒𝑐)
12 ) = ∏𝑒𝑐∈𝐸𝑐 𝔼(𝑌 2

12)

Proof. Follows directly.

Lemma 3.1.53. 𝔼(𝑌 2
12) = 𝑡#𝐸

Proof. Follows directly.

Lemma 3.1.54. 𝑡#𝐸 = 𝑡𝑘/2

Proof. Follows directly.

Proposition 3.1.55. Π(𝐺, 𝑤) = 𝑡𝑘/2.

Proof. Proof slightly outdated.
Let (𝐺, 𝑤) ∈ 𝒢𝑘/2+1

𝑘 . Since 𝑤 traverses each edge exactly twice, the number of edges in 𝐺 is
𝑘/2. Since the number of vertices is 𝑘/2 + 1, Exercise (Prop) 4.3.1 shows that 𝐺 is a tree. In
particular there are no self-edges (as we saw already in Proposition 4.4).

1st equality: definition right after equation 4.4 in notes 2nd equality: proposition 4.4 (w < 3)
and previous lemma (w = 1 –> 0) 3nd equality: definition (from main proposition) 4th equality:
number of edges is k/2.

Proposition 3.1.56. lim𝑛→∞ 𝔼 Tr(𝑋𝑘
𝑛) = 𝑡𝑘/2 ⋅ #𝒢𝑘/2+1

𝑘

Proof. Follows directly from 4.7.5 and 4.8.

Definition 3.1.57. A Dyck path of length 𝑘 is a sequence (𝑑1, ..., 𝑑𝑘) ∈ {±1}𝑘 such that their
partial sum ∑𝑗

𝑖=1 𝑑𝑖 ≥ 0 and total sum ∑𝑘
𝑖=1 𝑑𝑖 = 0. More intuitively, consider a diagonal lattice

path from (0, 0) to (𝑘, 0) consisting of 𝑘
2 ups and 𝑘

2 downs such that the path never goes below
thw 𝑥-axis.

Definition 3.1.58. Define a map 𝜙 whose input is (𝐺, 𝑤) ∈ 𝒢𝑘/2+1
𝑘 . Then for its output,

define a sequence d = d(𝐺, 𝑤) ∈ {+1, −1}𝑘 recursively as follows. Let 𝑑1 = +1. For 1 < 𝑗 ≤
𝑘, if 𝑤𝑗 ∉ {𝑤1, … , 𝑤𝑗−1}, set 𝑑𝑗 = +1; otherwise, set 𝑑𝑗 = −1; then d(𝐺, 𝑤) = (𝑑1, … , 𝑑𝑘).
𝜙((𝐺, 𝑤)) = d(𝐺, 𝑤)
Lemma 3.1.59. 𝜙((𝐺, 𝑤)) = d(𝐺, 𝑤) ⊆ 𝒟𝑘, where 𝒟𝑘 denotes the set of Dyck path of order 𝑘.

Proof. set 𝑃0 = (0, 0) and 𝑃𝑗 = (𝑗, 𝑑1 + ⋯ + 𝑑𝑗) for 1 ≤ 𝑗 ≤ 𝑘; then the piecewise linear path
connecting 𝑃0, 𝑃1, … , 𝑃𝑘 is a lattice path. Since (𝐺, 𝑤) ∈ 𝒢2

𝑘, each edge appears exactly two times
in 𝑤, meaning that the ±1s come in pairs in d(𝐺, 𝑤). Hence 𝑑1 + ⋯ + 𝑑𝑘 = 0. What’s more, for
any edge 𝑒, the −1 assigned to its second appearance in 𝑤 comes after the +1 corresponding to
its first appearance; this means that the partial sums 𝑑1 + ⋯ + 𝑑𝑗 are all ≥ 0. That is: d(𝐺, 𝑤)
is a Dyck path

Definition 3.1.60. Define a map 𝜓 whose input is a Dyck path of order 𝑘: d ∈ {±1}𝑘. Then the
output is viewing this Dyck path as a contour reversal of a tree where an up (𝑑𝑖 = 1) corresponds
to visiting a child node and a down (𝑑𝑖 = −1) corresponds to returning to parent node.
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Lemma 3.1.61. 𝜓(d𝑘) ⊆ 𝒢𝑘/2+1
𝑘

Proof. Use induction on the order of Dyck path 𝑘 which is an even number. Assume 𝜙(d𝑘−2) ⊆
𝒢𝑘/2−1

𝑘−2 . In the case of 𝑘, the last two steps appended to d𝑘−2 has to be 1 followed by −1 in order
for d𝑘 to be a Dyck path. By induction hypothesis, this generates a graph with one extra vertex
from the parent node, whose walk traversed at the last two steps of the walk.

Lemma 3.1.62.
𝜙 ∘ 𝜓 = 𝑖𝑑𝒟𝑘

Proof. Apply 𝜓 to a given Dyck path d by definition, then apply 𝜙 to get a new sequence d′

such that 𝑑′
𝑗 = 1 for new vertex, −1 otherwise. For the original Dyck path, the new vertex is the

up step corresponding to 1. This implies 𝜙 recovers the original Dyck path.

Lemma 3.1.63.
𝜓 ∘ 𝜙 = 𝑖𝑑𝒢𝑘/2+1

𝑘

Proof. The map 𝜓 recovers the graph walk structure of the input from its Dyck path by the
definition.

Lemma 3.1.64. Let 𝑘 be even and let 𝒟𝑘 denote the set of Dyck paths of length 𝑘

𝒟𝑘 = {(𝑑1, … , 𝑑𝑘) ∈ {±1}∶
𝑘

∑
𝑖=1

𝑑𝑖 ≥ 0 for 1 ≤ 𝑗 ≤ 𝑗, and
𝑘

∑
𝑖=1

𝑑𝑖 = 0}.

Then (𝐺, 𝑤) ↦ 𝑑(𝐺, 𝑤) is a bijection 𝒢𝑘/2+1
𝑘 → 𝒟𝑘.

Proof. obvious from the previous lemmas.

Definition 3.1.65.

𝐶0 = 1, and for 𝑛 ≥ 1, 𝐶𝑛 =
𝑛−1
∑
𝑘=0

𝐶𝑘𝐶𝑛−1−𝑘.

Lemma 3.1.66. #{binary trees with 𝑘
2 vertices} is given by Catalan number 𝐶𝑘/2

Proof.

Proposition 3.1.67.
|𝒟𝑘| = 𝐶𝑘/2

where |𝒟𝑘| denotes the number of Dyke paths of length 𝑘 while 𝐶𝑘 is the 𝑘th Catalan number.

Proof. Given a binary tree with 𝑘 nodes, perform preorder traversal: for each internal node
visited, write an up-step 𝑈 = (1, 1). For each time return from a child, write a down-step
𝐷 = (1, −1). Since every internal node has exactly two children, there are 𝑘/2 𝑈 ’s and 𝑘/2 𝐷’s,
giving a Dyke path of length 𝑘. Conversely, given a Dyck path, 𝑈 is interpreted as adding new
node while 𝐷 is returning to the parent node.

Proposition 3.1.68.
|𝒢𝑘/2+1

𝑘 | = 𝐶𝑘/2
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Proposition 3.1.69 (Proposition 4.1 in [1]). Let {𝑌𝑖𝑗}1≤𝑖≤𝑗 be independent random variables,
with {𝑌𝑖𝑖}𝑖≥1 identically distributed and {𝑌𝑖𝑗}1≤𝑖<𝑗 identically distributed. Suppose that 𝑟𝑘 =
max{𝔼(|𝑌11|𝑘), 𝔼(|𝑌12|𝑘)} < ∞ for each 𝑘 ∈ ℕ. Suppose further than 𝔼(𝑌𝑖𝑗) = 0 for all 𝑖, 𝑗 and
set 𝑡 = 𝔼(𝑌 2

12). If 𝑖 > 𝑗, define 𝑌𝑖𝑗 ≡ 𝑌𝑗𝑖, and let Y𝑛 be the 𝑛 × 𝑛 matrix with [Y𝑛]𝑖𝑗 = 𝑌𝑖𝑗 for
1 ≤ 𝑖, 𝑗 ≤ 𝑛. Let X𝑛 = 𝑛−1/2Y𝑛 be the corresponding Wigner matrix. Then

lim
𝑛→∞

1
𝑛𝔼 Tr(X𝑘

𝑛) = {𝑡𝑘/2𝐶𝑘/2, 𝑘 even
0, 𝑘 odd

.

Proof.

3.2 Convergence in Probability
Proposition 3.2.1 (Proposition 4.2 in [1]). Let {𝑌𝑖𝑗}1≤𝑖≤𝑗 be independent random variables,
with {𝑌𝑖𝑖}𝑖≥1 identically distributed and {𝑌𝑖𝑗}1≤𝑖<𝑗 identically distributed. Suppose that 𝑟𝑘 =
max{𝔼(|𝑌11|𝑘), 𝔼(|𝑌12|𝑘)} < ∞ for each 𝑘 ∈ ℕ. Suppose further than 𝔼(𝑌𝑖𝑗) = 0 for all 𝑖, 𝑗. If
𝑖 > 𝑗, define 𝑌𝑖𝑗 ≡ 𝑌𝑗𝑖, and let Y𝑛 be the 𝑛 × 𝑛 matrix with [Y𝑛]𝑖𝑗 = 𝑌𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Let
X𝑛 = 𝑛−1/2Y𝑛 be the corresponding Wigner matrix. Then

Var( 1
𝑛 Tr(X𝑘

𝑛)) = 𝑂𝑘( 1
𝑛2 )
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Chapter 4

SemicircleDistribution

4.1 Semicircle Probability Density Function
Definition 4.1.1. The function 𝑓 ∶ ℝ × ℝ≥0 × ℝ → ℝ defined by

𝑓(𝜇, 𝑣, 𝑥) = 1
2𝜋𝑣√(4𝑣 − (𝑥 − 𝜇)2)+

is called the probability density function (p.d.f.) of the semicircle distribution.

Lemma 4.1.2. Given a mean 𝜇 ∈ ℝ and a variance 𝑣 ∈ ℝ≥0, the p.d.f. 𝑓 ∶ ℝ → ℝ of the
semicircle distribution with mean 𝜇 and variance 𝑣 is given by

𝑓(𝑥) = 1
2𝜋𝑣√(4𝑣 − (𝑥 − 𝜇)2)+.

Lemma 4.1.3. If the variance 𝑣 is given to be zero, then the p.d.f. of the semicircle distribution
is the zero functional.

Proof. By Definition 4.1.1, the square root of a nonpositive number is defined to be zero. Hence,
the p.d.f. with a zero variance must be the zero functional.

Lemma 4.1.4. The p.d.f. of the semicircle distribution is always nonnegative.

Proof. By Definition 4.1.1, the square root of a nonpositive number is defined to be zero. Further-
more, the variance is always assumed to be nonnegative. Therefore, since the fractional term and
the square root term are always nonnegative, we conclude the p.d.f. is always nonnegative.

Lemma 4.1.5. Given a mean 𝜇 ∈ ℝ and a variance 𝑣 ∈ ℝ≥0, the p.d.f. 𝑓 ∶ ℝ → ℝ of the
semicircle distribution with mean 𝜇 and variance 𝑣 is measurable.

Proof.

Lemma 4.1.6. Given a mean 𝜇 ∈ ℝ and a variance 𝑣 ∈ ℝ≥0, the p.d.f. 𝑓 ∶ ℝ → ℝ of the
semicircle distribution with mean 𝜇 and variance 𝑣 is strongly measurable.

Proof. By Lemma 4.1.5, we know the p.d.f. 𝑓 with fixed mean 𝜇 and variance 𝑣 is measurable.
Since ℝ is equipped with a second countable topology, the fact that 𝑓 with fixed mean 𝜇 and
variance 𝑣 implies 𝑓 is strongly measurable.
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Lemma 4.1.7. Given a mean 𝜇 ∈ ℝ and a variance 𝑣 ∈ ℝ≥0, the p.d.f. 𝑓 ∶ ℝ → ℝ of the
semicircle distribution with mean 𝜇 and variance 𝑣 is integrable.

Proof.

Lemma 4.1.8. Given a mean 𝜇 ∈ ℝ and a nonzero variance 𝑣 ∈ ℝ>0, the lower integral of the
p.d.f. 𝑓 ∶ ℝ → ℝ of the semicircle distribution with mean 𝜇 and variance 𝑣 equals 1.

Proof.

Lemma 4.1.9. Given a mean 𝜇 ∈ ℝ and a nonzero variance 𝑣 ∈ ℝ>0, the integral of the p.d.f.
𝑓 ∶ ℝ → ℝ of the semicircle distribution with mean 𝜇 and variance 𝑣 equals 1.

Proof.

Lemma 4.1.10. For any p.d.f. 𝑓 ∶ ℝ → ℝ of the semicircle distribution, the following relation
is satisfied:

𝑓(𝜇, 𝑣, 𝑥 − 𝑦) = 𝑓(𝜇 + 𝑦, 𝑣, 𝑥)
for any 𝑢 ∈ ℝ, 𝑣 ∈ ℝ≥0, and 𝑥, 𝑦 ∈ ℝ.

Proof. Expanding Definition 4.1.1 gives

𝑓(𝜇, 𝑣, 𝑥 − 𝑦) = 1
2𝜋𝑣√(4𝑣 − ((𝑥 − 𝑦) − 𝜇)2)+ = 1

2𝜋𝑣√(4𝑣 − (𝑥 − (𝜇 + 𝑦))2)+ = 𝑓(𝜇 + 𝑦, 𝑣, 𝑥).

Lemma 4.1.11. For any p.d.f. 𝑓 ∶ ℝ → ℝ of the semicircle distribution, the following relation
is satisfied:

𝑓(𝜇, 𝑣, 𝑥 + 𝑦) = 𝑓(𝜇 − 𝑦, 𝑣, 𝑥)
for any 𝑢 ∈ ℝ, 𝑣 ∈ ℝ≥0, and 𝑥, 𝑦 ∈ ℝ.

Proof. Expanding Definition 4.1.1 gives

𝑓(𝜇, 𝑣, 𝑥 + 𝑦) = 1
2𝜋𝑣√(4𝑣 − ((𝑥 + 𝑦) − 𝜇)2)+ = 1

2𝜋𝑣√(4𝑣 − (𝑥 − (𝜇 − 𝑦))2)+ = 𝑓(𝜇 − 𝑦, 𝑣, 𝑥).

Lemma 4.1.12. For any p.d.f. 𝑓 ∶ ℝ → ℝ of the semicircle distribution, the following relation
is satisfied:

𝑓(𝜇, 𝑣, 𝑐−1𝑥) = |𝑐| ⋅ 𝑓(𝑐𝜇, 𝑐2𝑣, 𝑥)
for any 𝑢 ∈ ℝ, 𝑣 ∈ ℝ≥0, 𝑥 ∈ ℝ, and nonzero 𝑐 ∈ ℝ.

Proof.

Lemma 4.1.13. For any p.d.f. 𝑓 ∶ ℝ → ℝ of the semicircle distribution, the following relation
is satisfied:

𝑓(𝜇, 𝑣, 𝑐𝑥) = |𝑐−1| ⋅ 𝑓(𝑐−1𝜇, 𝑐−2𝑣, 𝑥)
for any 𝑢 ∈ ℝ, 𝑣 ∈ ℝ≥0, 𝑥 ∈ ℝ, and nonzero 𝑐 ∈ ℝ.

Proof. Expanding Definition 4.1.1 gives

𝑓(𝜇, 𝑣, 𝑐𝑥) = 1
2𝜋𝑣√(4𝑣 − (𝑐𝑥 − 𝜇)2)+ = 1

2𝜋𝑣√(4𝑣 − 𝑐2(𝑥 − 𝑐−1𝜇)2)+ = |𝑐−1| 1
2𝜋(𝑐−2𝑣)√(4(𝑐−2𝑣) − (𝑥 − 𝑐−1𝜇)2)+ = |𝑐−1|⋅𝑓(𝑐−1𝜇, 𝑐−2𝑣, 𝑥).
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4.2 To Extended Nonnegative Reals
Definition 4.2.1. Let 𝑓 ∶ ℝ × ℝ≥0 × ℝ → ℝ denote the real-valued semicircle density defined in
Definition 4.1.1. Define the function ℎ ∶ ℝ → ℝ ∪ {∞} as follows:

ℎ(𝑥) ∶= {𝑥 if 𝑥 ≥ 0,
0 otherwise.

Then we define the function 𝑔 ∶ ℝ × ℝ≥0 × ℝ → [0, ∞] ⊆ ℝ≥0 by:

𝑔(𝜇, 𝑣, 𝑥) ∶= ℎ(𝑓(𝜇, 𝑣, 𝑥)),

Lemma 4.2.2. For all 𝜇 ∈ ℝ, 𝑣 ∈ ℝ≥0, the extended p. d. f. 𝑔 ∶ ℝ → [0, ∞] satisfies:

𝑔(𝜇, 𝑣) = (𝑥 ↦ ℎ(𝑓(𝜇, 𝑣, 𝑥))) .

Lemma 4.2.3. If the variance 𝑣 is zero, then the extended p.d.f. is identically zero:

∀𝑥 ∈ ℝ, 𝑔(𝜇, 0, 𝑥) = 0.

Proof. This follows immediately from the definition of 𝑔 as ℎ(𝑓(𝜇, 0, 𝑥)), and the fact that
𝑓(𝜇, 0, 𝑥) = 0 from Lemma 4.1.3.

Lemma 4.2.4. Let 𝜇 ∈ ℝ, 𝑣 ∈ ℝ≥0, and 𝑥 ∈ ℝ. Then the real value recovered from the extended
semicircle PDF satisfies:

𝑔(𝜇, 𝑣, 𝑥)toReal = 𝑓(𝜇, 𝑣, 𝑥).
Proof. Since 𝑓(𝜇, 𝑣, 𝑥) ≥ 0, we have ℎ(𝑓(𝜇, 𝑣, 𝑥)) = 𝑓(𝜇, 𝑣, 𝑥), and thus

𝑔(𝜇, 𝑣, 𝑥) = ℎ(𝑓(𝜇, 𝑣, 𝑥)) = 𝑓(𝜇, 𝑣, 𝑥).

Therefore,
𝑔(𝜇, 𝑣, 𝑥)toReal = 𝑓(𝜇, 𝑣, 𝑥),

as desired.

Lemma 4.2.5. If 𝑣 > 0, then for all 𝜇, 𝑥 ∈ ℝ, the extended p.d.f. is nonnegative:

0 ≤ 𝑔(𝜇, 𝑣, 𝑥).

Proof. This is immediate from the definition of 𝑔 as ℎ(𝑓(𝜇, 𝑣, 𝑥)) and the nonnegativity of 𝑓
(Lemma 4.1.4).

Lemma 4.2.6. For all 𝜇, 𝑥 ∈ ℝ, and 𝑣 ∈ ℝ≥0, we have:

𝑔(𝜇, 𝑣, 𝑥) < ∞.

Proof. Since 𝑓(𝜇, 𝑣, 𝑥) ∈ ℝ≥0, we have 𝑔(𝜇, 𝑣, 𝑥) = ℎ(𝑓(𝜇, 𝑣, 𝑥)) < ∞.

Lemma 4.2.7. For all 𝜇, 𝑥 ∈ ℝ, and 𝑣 ∈ ℝ≥0, the extended p.d.f. is finite:

𝑔(𝜇, 𝑣, 𝑥) ≠ ∞.

Lemma 4.2.8. Let 𝜇 ∈ ℝ and 𝑣 ∈ ℝ>0. Then the support of the extended p.d.f. is

supp(𝑔(𝜇, 𝑣)) = {𝑥 ∈ ℝ ∶ 𝑓(𝜇, 𝑣, 𝑥) ≠ 0} = [𝜇 − 2√𝑣, 𝜇 + 2√𝑣] .
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Proof. sorry

Lemma 4.2.9. The function 𝑥 ↦ 𝑔(𝜇, 𝑣, 𝑥) is measurable for all 𝜇 ∈ ℝ, 𝑣 ∈ ℝ≥0.

Proof. Since ℎ is measurable, and ℎ is a measurable map ℝ≥0 → ℝ≥0, their composition is
measurable.

Lemma 4.2.10. If 𝑣 > 0, then the total integral of 𝑔 with respect to Lebesgue measure is 1:

∫
ℝ

𝑔(𝜇, 𝑣, 𝑥) 𝑑𝑥 = 1.

Proof. This follows from the equality:

∫
ℝ

ℎ(𝑓(𝜇, 𝑣, 𝑥)) 𝑑𝑥 = ℎ((∫
ℝ

𝑓(𝜇, 𝑣, 𝑥) 𝑑𝑥) = ℎ(1) = 1

using Lemma 4.1.8.

4.3 Semicircle Distribution
Definition 4.3.1. The semicircle distribution with mean 𝜇 and variance 𝑣 is the Dirac delta at
� if v = 0; otherwise, it’s the Lebesgue measure weighted by the semicircle PDF.

Lemma 4.3.2. If 𝑣 ≠ 0, then the definition the semicircle distribution is defined as the Lebesgue
measure weighted by the semicircle probability density function.

Proof. Follows directly from definition of semicircle distribution.

Lemma 4.3.3. If the variance is 0, then the semicircle distribution is exactly the Dirac measure
at 𝜇.

Proof. Follows directly from definition of semicircle distribution.

Lemma 4.3.4. The measure semicircleReal is a probability measure, no matter the values of
𝜇 ∈ ℝ and 𝑣 ∈ ℝ≥0.

Lemma 4.3.5. If the variance v is nonzero, then the semicircle distribution has no atoms.

Lemma 4.3.6. For a semicircle measure with mean 𝜇 and nonzero variance v, the measure
of any measurable set 𝑠 equals the Lebesgue integral over 𝑠 of the semicircle probability density
function at x.

Lemma 4.3.7. For any real mean 𝜇, and any nonnegative variance 𝑣 that is not zero, and
any measurable set 𝑠 of real numbers, the semicircle distribution measure of the set 𝑠 equals
the extended nonnegative real number version (ENNReal.ofReal) of the integral of the semicircle
probability density function over s.

Lemma 4.3.8. For a semicircle distribution with mean 𝜇 and nonzero variance 𝑣, the measure
semicircleReal 𝜇 𝑣 is absolutely continuous with respect to the Lebesgue measure.

Lemma 4.3.9. The Radon–Nikodym derivative of the semicircle measure semicircleReal 𝜇 𝑣 with
respect to the Lebesgue measure is almost everywhere equal to the semicircle probability density
function semicirclePDF (𝜇, 𝑣).
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Lemma 4.3.10.
Let 𝑓 ∶ ℝ → 𝐸 be a function where 𝐸 is a normed vector space over ℝ. For the semicircle

distribution with mean 𝜇 ∈ ℝ and variance 𝑣 > 0, we have:

∫ 𝑓(𝑥) 𝑑(semicircleReal 𝜇 𝑣)(𝑥) = ∫ semicirclePDFReal(𝜇, 𝑣, 𝑥) ⋅ 𝑓(𝑥) 𝑑𝑥.

4.4 Transformations
Lemma 4.4.1. The map of a semicircle distribution by addition of a constant is semicircular.
That is, given a constant 𝑦 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑋 + 𝑦)−1 = SC(𝜇 + 𝑦, 𝑣).
Proof.

Lemma 4.4.2. The map of a semicircle distribution by addition of a constant is semicircular.
That is, given a constant 𝑦 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑦 + 𝑋)−1 = SC(𝑦 + 𝜇, 𝑣).
Proof. Obvious from commutativity between 𝑋 + 𝑦 and 𝑦 + 𝑋.

Lemma 4.4.3. The map of a semicircle distribution by multiplication by a constant is semicir-
cular. That is, given a constant 𝑐 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑐𝑋)−1 = SC(𝑐𝜇, 𝑐2𝑣).
Proof.

Lemma 4.4.4. The map of a semicircle distribution by multiplication by a constant is semicir-
cular. That is, given a constant 𝑐 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑋𝑐)−1 = SC(𝜇𝑐, 𝑐2𝑣).
Proof. Use commutativity between 𝑋𝑐 and 𝑐𝑋.

Lemma 4.4.5. Given a constant 𝑐 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ −𝑋)−1 = SC(−𝜇, 𝑣)
Proof. Special case of the multiplication by constant map with constant being −1.

Lemma 4.4.6. The map of a semicircle distribution by multiplication by a constant is semicir-
cular. That is, given a constant 𝑦 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑋 − 𝑦)−1 = SC(𝜇 − 𝑦, 𝑣)
Proof. Use the map by addition of constant and substitute constant for its −1 multiple.

Lemma 4.4.7. The map of a semicircle distribution by multiplication by a constant is semicir-
cular. That is, given a constant 𝑦 ∈ ℝ, SC(𝜇, 𝑣) ∘ (𝑋 ↦ 𝑦 − 𝑋)−1 = SC(𝑦 − 𝜇, 𝑣)
Proof.

Lemma 4.4.8. Given a real random variable 𝑋 ∼ SC(𝜇, 𝑣) then for a constant 𝑦 ∈ ℝ, 𝑋 + 𝑦 ∼
SC(𝜇 + 𝑦, 𝑣)
Proof.

Lemma 4.4.9. Given a real random variable 𝑋 ∼ SC(𝜇, 𝑣) then for a constant 𝑦 ∈ ℝ, 𝑋 + 𝑦 ∼
SC(𝑦 + 𝜇, 𝑣)
Proof.

Lemma 4.4.10. Given a real random variable 𝑋 ∼ SC(𝜇, 𝑣), then for a constant 𝑐 ∈ ℝ,
𝑐𝑋 ∼ SC(𝑐𝜇, 𝑐2𝑣)
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Proof.

Lemma 4.4.11. Given a real random variable 𝑋 ∼ SC(𝜇, 𝑣), then for a constant 𝑐 ∈ ℝ,
𝑋𝑐 ∼ SC(𝜇𝑐, 𝑐2𝑣)
Proof.

Lemma 4.4.12.
𝔼[𝑋] = ∫ 𝑥𝑑𝜎 = 𝜇

Lemma 4.4.13. 𝑉 𝑎𝑟(𝑋) = 𝑣
Lemma 4.4.14. The variance of a real semicircle distribution with parameter (𝜇, 𝑣) is its vari-
ance parameter 𝑣
Lemma 4.4.15. All the moments of a real semicircle distribution are finite. That is, the identity
is in 𝐿𝑝 for all finite 𝑝

Lemma 4.4.16. 𝔼[(𝑋 − 𝜇)2𝑛] = 𝑣𝑛𝐶𝑛

Lemma 4.4.17. 𝔼[(𝑋 − 𝜇)2𝑛] = 𝑣𝑛𝐶𝑛

Lemma 4.4.18. 𝔼[(𝑋 − 𝜇)2𝑛+1] = 0
Lemma 4.4.19. 𝔼[(𝑋 − 𝜇)2𝑛+1] = 0
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