- up :: (
- down : α
Extract a value from
GLift α
- )
Instances For
Equations
- Auto.Embedding.ofPropLift p = { down := Auto.Bool.ofProp p.down }
Instances For
Equations
- Auto.Embedding.inegSuccLift m = { down := Int.negSucc m.down }
Instances For
Equations
- Auto.Embedding.sleLift m n = { down := Auto.String.le m.down n.down }
Instances For
Equations
- Auto.Embedding.sltLift m n = { down := Auto.String.lt m.down n.down }
Instances For
Equations
- Auto.Embedding.sprefixofLift m n = { down := m.down.isPrefixOf n.down }
Instances For
Equations
- Auto.Embedding.bvofNatLift n x = { down := BitVec.ofNat n x.down }
Instances For
Equations
- Auto.Embedding.bvofIntLift n x = { down := BitVec.ofInt n x.down }
Instances For
Equations
- Auto.Embedding.bvsmtlshrLift n a s = { down := a.down.ushiftRight s.down.toNat }
Instances For
Equations
- Auto.Embedding.bvsmtashrLift n a s = { down := a.down.sshiftRight s.down.toNat }
Instances For
Equations
- Auto.Embedding.bvextractLift n h l x = { down := BitVec.extractLsb h l x.down }
Instances For
Equations
- Auto.Embedding.bvrepeatLift w i x = { down := BitVec.replicate i x.down }
Instances For
Equations
- Auto.Embedding.bvzeroExtendLift w v x = { down := BitVec.zeroExtend v x.down }
Instances For
Equations
- Auto.Embedding.bvsignExtendLift w i x = { down := BitVec.signExtend i x.down }
Instances For
Equations
- Auto.Embedding.constId x✝ h = h
Instances For
Equations
- Auto.Embedding.LiftTyConv tyUp = Auto.Embedding.GLift tyUp.down
Instances For
Equations
- Auto.Embedding.EqLift.ofIsomTy I = { eqF := Auto.Embedding.eqLift I, down := ⋯, up := ⋯ }
Instances For
Equations
- Auto.Embedding.eqLiftFn β x y = { down := x = y }
Instances For
def
Auto.Embedding.forallLift.down
{α : Sort u}
{β : Sort v}
(I : IsomType α β)
(p : β → GLift (Sort w))
(H : (forallLift I p).down)
(x : β)
:
(p x).down
Equations
- Auto.Embedding.forallLift.down I p H x = ⋯ ▸ H (I.g x)
Instances For
def
Auto.Embedding.forallLift.up
{α : Sort u}
{β : Sort v}
(I : IsomType α β)
(p : β → GLift (Sort w))
(H : (x : β) → (p x).down)
:
(forallLift I p).down
Equations
- Auto.Embedding.forallLift.up I p H x = ⋯ ▸ ⋯ ▸ H (I.f x)
Instances For
structure
Auto.Embedding.ForallLift
(β : Sort v')
:
Sort (max (max (max (v + 1) v') (w + 1)) (w' + 1))
Instances For
Equations
- Auto.Embedding.ForallLift.ofIsomTy I = { forallF := Auto.Embedding.forallLift I, down := Auto.Embedding.forallLift.down I, up := Auto.Embedding.forallLift.up I }
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Auto.Embedding.ExistLift.ofIsomTy I = { existF := Auto.Embedding.existLift I, down := ⋯, up := ⋯ }
Instances For
noncomputable def
Auto.Embedding.iteLift
{α : Sort u}
{β : Sort v}
(I : IsomType α β)
(b : GLift Prop)
(x y : β)
:
β
Equations
- Auto.Embedding.iteLift I b x y = I.f (Auto.Bool.ite' b.down (I.g x) (I.g y))
Instances For
noncomputable def
Auto.Embedding.IteLift.ofIsomTy
{α : Sort u}
{β : Sort v}
(I : IsomType α β)
:
IteLift β
Equations
- Auto.Embedding.IteLift.ofIsomTy I = { iteF := Auto.Embedding.iteLift I, wf := ⋯ }
Instances For
Equations
- Auto.Embedding.iteLiftFn β b x y = Auto.Bool.ite' b.down x y
Instances For
Equations
- Auto.Embedding.IteLift.default β = { iteF := fun (b : Auto.Embedding.GLift Prop) (x y : β) => Auto.Bool.ite' b.down x y, wf := ⋯ }