Documentation
Auto
.
Lib
.
OptionExtra
Search
return to top
source
Imports
Init
Imported by
Auto
.
Option
.
allp
Auto
.
Option
.
all_allp
Auto
.
Option
.
allp_uniform
Auto
.
Option
.
isNone_eq_not_isSome
Auto
.
Option
.
isSome_eq_not_isNone
Auto
.
Option
.
beq_none_none
Auto
.
Option
.
beq_none_some
Auto
.
Option
.
beq_some_none
Auto
.
Option
.
beq_some_some
Auto
.
Option
.
beq_refl
Auto
.
Option
.
eq_of_beq_eq_true
source
@[inline]
def
Auto
.
Option
.
allp
{
α
:
Type
u_1}
(
p
:
α
→
Prop
)
:
Option
α
→
Prop
Equations
Auto.Option.allp
p
(
some
a
)
=
p
a
Auto.Option.allp
p
none
=
True
Instances For
source
theorem
Auto
.
Option
.
all_allp
{
α
:
Type
u_1}
(
p
:
α
→
Bool
)
(
x
:
Option
α
)
:
(
Option.all
p
x
=
true
)
=
allp
(fun (
x
:
α
) =>
p
x
=
true
)
x
source
theorem
Auto
.
Option
.
allp_uniform
{
α
:
Type
u_1}
(
p
:
α
→
Prop
)
(
x
:
Option
α
)
:
(∀ (
x
:
α
),
p
x
)
→
allp
p
x
source
theorem
Auto
.
Option
.
isNone_eq_not_isSome
{
α
:
Type
u_1}
{
x
:
Option
α
}
:
x
.
isNone
=
!
x
.
isSome
source
theorem
Auto
.
Option
.
isSome_eq_not_isNone
{
α
:
Type
u_1}
{
x
:
Option
α
}
:
x
.
isSome
=
!
x
.
isNone
source
theorem
Auto
.
Option
.
beq_none_none
{
α
:
Type
u_1}
[
BEq
α
]
:
(
none
==
none
)
=
true
source
theorem
Auto
.
Option
.
beq_none_some
{
α
:
Type
u_1}
{
x
:
α
}
[
BEq
α
]
:
(
none
==
some
x
)
=
false
source
theorem
Auto
.
Option
.
beq_some_none
{
α
:
Type
u_1}
{
x
:
α
}
[
BEq
α
]
:
(
some
x
==
none
)
=
false
source
theorem
Auto
.
Option
.
beq_some_some
{
α
:
Type
u_1}
{
x
y
:
α
}
[
BEq
α
]
:
(
some
x
==
some
y
)
=
(
x
==
y
)
source
theorem
Auto
.
Option
.
beq_refl
{
α
:
Type
u_1}
[
BEq
α
]
(
α_beq_refl
:
∀ (
x
:
α
), (
x
==
x
)
=
true
)
{
x
:
Option
α
}
:
(
x
==
x
)
=
true
source
theorem
Auto
.
Option
.
eq_of_beq_eq_true
{
α
:
Type
u_1}
[
BEq
α
]
(
α_eq_of_beq_eq_true
:
∀ (
x
y
:
α
),
(
x
==
y
)
=
true
→
x
=
y
)
{
x
y
:
Option
α
}
(
H
: (
x
==
y
)
=
true
)
:
x
=
y