Documentation

Auto.Lib.OptionExtra

@[inline]
def Auto.Option.allp {α : Type u_1} (p : αProp) :
Option αProp
Equations
Instances For
    theorem Auto.Option.all_allp {α : Type u_1} (p : αBool) (x : Option α) :
    (Option.all p x = true) = allp (fun (x : α) => p x = true) x
    theorem Auto.Option.allp_uniform {α : Type u_1} (p : αProp) (x : Option α) :
    (∀ (x : α), p x)allp p x
    theorem Auto.Option.beq_none_some {α : Type u_1} {x : α} [BEq α] :
    theorem Auto.Option.beq_some_none {α : Type u_1} {x : α} [BEq α] :
    theorem Auto.Option.beq_some_some {α : Type u_1} {x y : α} [BEq α] :
    (some x == some y) = (x == y)
    theorem Auto.Option.beq_refl {α : Type u_1} [BEq α] (α_beq_refl : ∀ (x : α), (x == x) = true) {x : Option α} :
    (x == x) = true
    theorem Auto.Option.eq_of_beq_eq_true {α : Type u_1} [BEq α] (α_eq_of_beq_eq_true : ∀ (x y : α), (x == y) = truex = y) {x y : Option α} (H : (x == y) = true) :
    x = y