Documentation

Auto.Lib.Pos

inductive Auto.Pos :
Instances For
    Equations
    @[reducible, inline]
    Equations
    Instances For
      Equations
      Instances For
        Equations
        Instances For
          @[irreducible]
          Equations
          Instances For
            @[irreducible]
            def Auto.Pos.ofNat'WF.inductionOn {motive : NatSort u} (ind : (x : Nat) → motive ((x + 2) / 2)motive (x + 2)) (base₀ : motive 0) (base₁ : motive 1) (x : Nat) :
            motive x
            Equations
            Instances For
              @[irreducible]
              def Auto.Pos.ofNat'WF.induction {motive : NatSort u} (ind : (x : Nat) → motive ((x + 2) / 2)motive (x + 2)) (base₀ : motive 0) (base₁ : motive 1) (x : Nat) :
              motive x
              Equations
              Instances For
                theorem Auto.Pos.ofNat'WF.succSucc (n : Nat) :
                ofNat'WF (n + 2) = match (n + 2) % 2 with | 0 => (ofNat'WF ((n + 2) / 2)).xO | x => (ofNat'WF ((n + 2) / 2)).xI
                theorem Auto.Pos.ofNat'WF.double_xO (n : Nat) :
                n 0ofNat'WF (n * 2) = (ofNat'WF n).xO
                theorem Auto.Pos.ofNat'WF.doubleSucc_xI (n : Nat) :
                n 0ofNat'WF (n * 2 + 1) = (ofNat'WF n).xI
                theorem Auto.Pos.toNat'_ofNat'WF (n : Nat) :
                n 0(ofNat'WF n).toNat' = n
                def Auto.Pos.ofNat'RD (rd n : Nat) :
                Equations
                Instances For
                  theorem Auto.Pos.ofNat'.equivAux (rd n : Nat) :
                  rd nofNat'WF n = ofNat'RD rd n
                  Equations
                  Instances For
                    Equations
                    Instances For
                      Equations
                      Instances For
                        def Auto.Pos.beq (p q : Pos) :
                        Equations
                        Instances For
                          theorem Auto.Pos.beq_refl {p : Pos} :
                          p.beq p = true
                          theorem Auto.Pos.eq_of_beq_eq_true {p q : Pos} :
                          p.beq q = truep = q
                          theorem Auto.Pos.ne_of_beq_eq_false {p q : Pos} :
                          p.beq q = falsep q
                          def Auto.Pos.succ (p : Pos) :
                          Equations
                          Instances For
                            def Auto.Pos.pred (p : Pos) :
                            Equations
                            Instances For
                              theorem Auto.Pos.succ_neq (p : Pos) :
                              p p.succ
                              theorem Auto.Pos.pred_neq (p : Pos) :
                              p xHp p.pred
                              theorem Auto.Pos.succ_inj (p q : Pos) :
                              p.succ = q.succp = q