Documentation

Duper.Rules.Clausification

theorem Duper.not_of_eq_false {p : Prop} (h : p = False) :
theorem Duper.of_not_eq_false {p : Prop} (h : (¬p) = False) :
p
theorem Duper.clausify_and_left {p q : Prop} (h : (p q) = True) :
theorem Duper.clausify_and_right {p q : Prop} (h : (p q) = True) :
theorem Duper.clausify_and_false {p q : Prop} (h : (p q) = False) :
theorem Duper.clausify_or {p q : Prop} (h : (p q) = True) :
theorem Duper.clausify_or_false_left {p q : Prop} (h : (p q) = False) :
theorem Duper.clausify_or_false_right {p q : Prop} (h : (p q) = False) :
theorem Duper.clausify_not {p : Prop} (h : (¬p) = True) :
theorem Duper.clausify_not_false {p : Prop} (h : (¬p) = False) :
theorem Duper.clausify_imp {p q : Prop} (h : (pq) = True) :
theorem Duper.clausify_imp_false_left {p q : Prop} (h : (pq) = False) :
theorem Duper.clausify_imp_false_right {p : Sort u_1} {q : Prop} (h : (∀ (a : p), q) = False) :
theorem Duper.clausify_forall {α : Sort u_1} {p : αProp} (x : α) (h : (∀ (x : α), p x) = True) :
p x = True
theorem Duper.clausify_exists {α : Sort u_1} {p : αProp} (h : ( (x : α), p x) = True) :
theorem Duper.clausify_exists_exists {α : Sort u_1} {β : Sort u_2} {p : αβProp} (h : ( (a : α), (b : β), p a b) = True) :
( (x : α ×' β), p x.fst x.snd) = True
theorem Duper.clausify_forall_forall {α : Sort u_1} {β : Sort u_2} {p : αβProp} (h : (∀ (a : α) (b : β), p a b) = False) :
(∀ (x : α ×' β), p x.fst x.snd) = False
theorem Duper.nonempty_of_exists {α : Sort u_1} {p : αProp} (h : ( (x : α), p x) = True) :
theorem Duper.clausify_exists_false {α : Sort u_1} {p : αProp} (x : α) (h : ( (x : α), p x) = False) :
p x = False
theorem Duper.nonempty_of_forall_eq_false {α : Sort u_1} {p : αProp} (h : (∀ (x : α), p x) = False) :
noncomputable def Duper.Skolem.some {α : Sort u_1} (p : αProp) (x : α) :
α
Equations
Instances For
    theorem Duper.Skolem.spec {α : Sort u_1} {p : αProp} (x : α) (hp : (a : α), p a) :
    p (some p x)
    theorem Duper.exists_of_forall_eq_false {α : Sort u_1} {p : αProp} (h : (∀ (x : α), p x) = False) :
    (x : α), ¬p x
    theorem Duper.clausify_iff {p q : Prop} (h : (p q) = True) :
    p = q
    theorem Duper.clausify_iff1 {p q : Prop} (h : (p q) = True) :
    theorem Duper.clausify_iff2 {p q : Prop} (h : (p q) = True) :
    theorem Duper.clausify_not_iff {p q : Prop} (h : (p q) = False) :
    p q
    theorem Duper.clausify_not_iff1 {p q : Prop} (h : (p q) = False) :
    theorem Duper.clausify_not_iff2 {p q : Prop} (h : (p q) = False) :
    theorem Duper.clausify_prop_inequality2 {p q : Prop} (h : p q) :
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        If e has the form ∀ x : ty, b, then clausifies e = False by skolemizing x

        Equations
        Instances For

          If e has the form ∃ x : ty, b, then clausifies e = True by skolemizing x

          Instances For
            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For